1. Danae goes cycling on three random mornings each week. When he goes cycling he has eggs for breakfast 70% of the time. When he does not go cycling he has eggs for breakfast 25% of the time.
 a. Create a tree diagram below representing the situation.

 ![Tree Diagram]

 b. Calculate the probability that Danae has eggs for breakfast.

 \[
 \frac{2}{7} \times \frac{7}{10} + \frac{4}{7} \times \frac{1}{4} = \frac{42}{140} + \frac{20}{140} = \frac{62}{140} = \frac{31}{70}
 \]

 Danae will eat eggs, given she goes cycling.

 c. Calculate the probability that it will not rain tomorrow, given it rained today.

 \[
 \frac{P(C \cap E)}{P(C)} = \frac{\frac{21}{70}}{\frac{3}{7}} = \frac{3}{10}
 \]

2. An art gallery has 25 rooms. 16 contain sculptures, 19 contain paintings and only the one contains neither. If a visitor enters a room at random, determine the probability that it contains:
 a. both paintings and sculptures

 ![Venn Diagram]

 \[
 \frac{11}{25}
 \]

 b. only one type of art

 ![Venn Diagram]

 \[
 \frac{13}{25}
 \]

 c. Paintings given that there are no sculptures.

3. The probability that a man will be alive in 25 years is \(\frac{3}{5}\), and the probability that his wife will be alive is \(\frac{2}{3}\). Assuming these events are independent, determine the probability that in 25 years:
 a. both will be alive

 \[
 \frac{3}{5} \times \frac{2}{3} = \frac{2}{5}
 \]

 b. at least one will be alive

 \[
 \frac{2}{5} \times \frac{3}{5} + \frac{2}{5} \times \frac{1}{3} + \frac{2}{5} \times \frac{2}{3} = \frac{2}{15} + \frac{3}{15} + \frac{4}{15} = \frac{13}{15}
 \]

 c. only the wife will be alive.

 \[
 \frac{2}{5} \times \frac{2}{3} = \frac{4}{15}
 \]
4. In a certain town, three newspapers are published. 20% of the population read A, 16% read B, 14% read C, 8% read A and B, 5% read A and C, 4% read B and C, and 2% read all 3 newspapers. A person is selected at random. Use a Venn diagram to help determine the probability that the person reads:

 a. none of the papers \(\frac{65}{280} \) or \(\frac{4}{20} \)

 b. at least one of the papers \(\frac{235}{280} \) or \(\frac{7}{20} \)

 c. exactly one of the papers \(\frac{68}{280} \) or \(\frac{11}{50} \)

 d. either A or B \(\frac{28}{280} \) or \(\frac{7}{20} \)

 e. A, given that the person reads at least one paper \(\frac{20}{35} = \frac{20}{5} or \frac{4}{1} \)

 f. C, given that the person reads either A or B or both.

\[\frac{7}{28} = \frac{1}{4} \]

5. The places were the circus (C), the museum (M) and the park (P). 16 families went to the circus, 22 families went to the museum \(\{ \text{added} \} \), 14 families went to the park, 4 families went to all three places, 7 families went to both the circus and the museum, but not the park, 3 families went to both the circus and the park, but not the museum, 1 family went to the park only.

 a. Draw a Venn diagram to represent the given information using sets labelled C, M and P. Complete the diagram to include the number of families represented in each region.

 b. Find the number of families who

 i. went to the circus only \(2 \)

 ii. went to the museum and the park but not the circus; \(6 \)

 iii. did not go to any of the three places on the weekend. \(12 \)

 c. A family is chosen at random from the group of 40 families. Find the probability that the family went to

 i. the circus; \(\frac{16}{40} = \frac{2}{5} \)

 ii. two or more places \(\frac{20}{40} = \frac{1}{2} \)

 iii. the park or the circus, but not the museum \(\frac{9}{40} \) or \(\frac{3}{20} \)

 iv. the museum, given that they also went to the circus. \(\frac{1}{16} \)

 d. Two families are chosen at random from the group of 40 families. Find the probability that both families went to the circus.

 \[\frac{16 \times 15}{40 \times 39} = \frac{240}{1560} = \frac{2}{13} \]
6. The weights of corndogs are normally distributed with a mean of 103g and a standard deviation of 13g.

d. Construct a normal distribution graph labeling everything (µ, σ and the name of the graph)! Be precise.

e. Find the percentage of corndogs that weigh between 104g and 129g.

\[
\text{normalcdf}(104, 129, 103, 13) = \frac{44.66}{100} = 44.66\%
\]

f. Calculate the highest weight of the bottom 7% weights of the corndogs. Shade the area in the graph above and label the value.

\[
\text{invnorm}(.07, 103, 13) = 83.81g
\]

g. 700 corndogs are weighed. Calculate the expected number of corndogs that weigh less than 98g.

\[
\text{normalcdf}(-1, 98, 103, 13) = .3563 (700) = 245.18\text{ corndogs}
\]

7. The length of steel rods produced by a machine is normally distributed with a standard deviation of 3 mm. It is found that 2% of all rods are less than 25 mm long. Find the mean length of rods produced by the machine.

\[
\text{invnorm}(0.02, 0.1) = -2.054
\]

\[
\frac{-2.054 \times 3}{3} = \mu = 31.16\text{ mm}
\]

8. Let X be the weight in grams of bags of sugar filled by a machine. Bags less than 500 grams are considered underweight. Suppose that \(X \sim N(503, 2^2) \).

a. What proportion of bags are underweight?

\[
\text{normalcdf}(-1, 500, 503, 2) = .0668
\]

b. Bags weighing more than 507 grams are considered overweight. If the machine fills 6000 bags in one day, how many bags would you expect to be overweight?

\[
\text{normalcdf}(507, 1, 503, 2) = .0275 \times 6000
\]

\[
\approx 136.5 \text{ bags or 137}
\]

9. X is a random variable which is distributed normally with \(\mu = 55 \) and \(\sigma = 7 \). Approximate (no calculator):

a. \(P(48 \leq X \leq 55) \approx 34\%
\]
b. \(P(X \leq 41) \)
\[
= 2.5\% \times 0.025 = 0.0125
\]

c. \(P(X \leq 62) \)
\[
= 68\% \times 32\% \div 2 = 16\% \cdot 0.16
\]
d. \(P(34 \leq X \leq 69) \)
\[
= 0.5 \div 2 = 0.9574
\]

10. Suppose \(X \sim N(30, 8^2) \). Illustrate with a sketch and find \(k \) such that:
 a. \(P(X \leq k) = 0.12 \)
 \[
 \text{invnorm}(0.12, 30, 8) = k \approx 20.60
 \]
 b. \(P(X \geq k) = 0.6 \)
 \[
 P(x \leq k) = 0.4 \]
 \[
 \text{invnorm}(0.4, 30, 8) = 27.97 = k
 \]

11. The distribution curve shown corresponds to age of NBA players and is:
 \(X \sim N(\mu, \sigma^2) \).

Area A = Area B and \(P(A) + P(B) = .18 \)
 a. Find \(\mu \) and \(\sigma \) (hint: z-scores used for \(\sigma \))
 \[
 \mu = 101 + \frac{123}{2} = 112
 \]
 \[
 \text{invnorm}(0.09, 0, 1) = -1.341
 \]
 \[
 -1.341 = \frac{101 - 112}{\sigma}
 \]
 \[
 \sigma = \frac{-11}{1.341} \approx 8.204
 \]
 b. Find age \(k \) for \(P(X > k) = .24 \)
 \[
 P(x < k) = .76
 \]
 \[
 \text{invnorm}(0.76, 112, 8.204) = 117.79
 \]