New Telescope Optics Can Directly View Exoplanets By Hiding Interfering Starlight

By Rebecca Boyle
June 11th, 2012

Sifting Starlight These two images show HD 157728, a nearby star 1.5 times larger than the sun. The star is centered in both images, and its light has been mostly removed by an adaptive optics system and coronagraph belonging to Project 1640, which uses new technology on the Palomar Observatory’s 200-inch Hale telescope to spot planets.

For now, the thousands of potential exoplanets discovered in the past two years are little more than curvy dips on a graph. Astronomers using the Kepler Space Telescope pick them out by examining the way they blot out their own stars’ light as they move through their orbits. But if astronomers could block out the stars themselves, they may be able to see the planets directly. A new adaptive optics system on the storied Palomar Observatory just started doing that — it’s the first of its kind capable of spotting planets outside our solar system.

The new system is called Project 1640, and it creates dark holes around stars that may harbor planets. It removes the blinding glare of starlight so astronomers can see the exoplanets. This is extremely hard to do, said Charles Beichman, executive director of the NASA Exoplanet Science Institute at Caltech. “Imagine trying to see a firefly whirling around a searchlight more than a thousand miles away,” he said in a statement.

Coronagraphs are used to block out starlight so scientists can see what lurks around the stars. But even when you block the brightest light, about half of it can still fuzz up an image, creating speckles and background light that will interfere with images of potential planets. To address this speckly starlight, Project 1640 uses the world’s most advanced adaptive optics system, and four separate instruments on Palomar’s 200-inch Hale telescope that image the infrared light generated by young, warm planets orbiting stars.

Beta Pictoris: This image of the star Beta Pictoris shows a huge planet orbiting the star. The pale blue dots at the center are the planet, shown in two orbital configurations. The black disk is where the star would be; it’s blocked by a coronagraph. But more starlight is visible at the sides, which could potentially be outshining other, smaller planets in this solar system. A new adaptive optics system can remove this shine, too, unveiling new worlds around distant stars.

Its adaptive optics system can make more than 7 million active mirror deformations per second, with a precision level better than one nanometer. Its wave front sensor, which detects the atmosphere-caused deformations of light hitting the telescope, is also sensitive to a nanometer. As the system detects perturbations in the light waves coming into the telescope, it continually adjusts and deforms to block out the light as effectively as possible.

The system can resolve objects 1 million to 10 million times fainter than the object at the center of the image, which is usually the star. With that level of sensitivity, astronomers may be able to see planets.

Now that it’s up and running, as of late June, astronomers have embarked on a three-year survey of hot young stars. The planets they will detect with this method will probably be large hot Jupiters, and so unlikely to contain life — but their moons potentially could. In any event, it’s likely to be yet another major player in the planet-hunting business.

Could One of These Worlds Be E.T.’s Home?

by Gregory Mone

Of the more than 700 planets discovered outside our solar system, none yet fit the description alien hunters dream about: an Earth-like planet in an Earth-like orbit around a sunlike star. But some scientists want to broaden the parameters of their search. In November a team led by Washington State University astrobiologist Dirk Schulze-Makuch devised the Planetary Habitability Index, or PHI, a scoring system for distant worlds that measures their suitability for any kind of life, not merely life as we know it. “We can’t go after only the Earth model of life,” he says. “You really want to be open-minded.”

Courtesy Habitability Laboratory at UPR Arecibo; Courtesy NASA (3)

Under Schulze-Makuch’s criteria, a faraway world racks up points if it has a solid surface and an atmosphere, which act together to support chemical reactions and deflect damaging radiation. Liquid water is not a prerequisite for a high score: A planet with liquids on the surface receives more points than a dry world, but the presence of water confers no additional advantage. “If you didn’t know that water worked on Earth,” Schulze-Makuch says, “you might think methanol would work much better for life.”

The PHI scores of bodies within the solar system reflect Schulze-Makuch’s hypothesis that the most Earth-like places are not necessarily the friendliest for life. Earth gets a near-perfect score of 0.96 on the 0 to 1 scale (it just has less available energy now than it did when life originated 4 billion years ago). But second place goes to Saturn’s moon Titan (0.64), which hosts vast lakes of liquid hydrocarbons but has surface temperatures of –300 degrees Fahrenheit. Mars, the target of more than a dozen robotic missions to hunt for signs of microbial life, comes in third at 0.59.

None of the planets yet found outside our solar system score particularly well. Gliese 581d, a rocky world nestling a cool, dim star, nets a rating of 0.43. Kepler-22b, the most Earth-like planet NASA’s Kepler space telescope has found so far, gets a similar score. However, Schulze-Makuch emphasizes that the numbers are subject to change. Astronomers have been able to determine the surface and atmospheric composition of only a few exoplanets, so for most planets the data are incomplete. Future telescopes that are powerful enough to probe these worlds, such as NASA’s proposed Terrestrial Planet Finder, should make the PHI much more useful.